The $modify_identity()
applies the modifier equations (traitid
)
to find the EPA profile of a modified identity.
See also
Other InteRactModel methods:
method-add-equation
,
method-characteristic-emotion
,
method-closest-terms
,
method-deflection
,
method-fundamentals
,
method-max-confirm
,
method-optimal-behavior
,
method-reidentify
Examples
act <- interact()
#> ✔ dictionary = list(dataset = "usfullsurveyor2015", group = "all")
#> ✔ equations = list(key = "us2010", group = "all")
act$add_equation(type = "traitid", group = "all")
#> ✔ traitid = list(key = "us2010", group = "all")
new_term <- act$modify_identity(list(M = "angry", I = "doctor"))
new_term
#> # A tibble: 1 × 3
#> term component ratings
#> <chr> <chr> <list>
#> 1 angry__doctor identity <dbl [3]>
new_term$ratings
#> [[1]]
#> e p a
#> -1.050056 2.253300 1.078900
#>
grid <- data.frame(
M = c("tired", "taciturn", "angry", "happy"),
I = c("academic", "academic", "academic", "academic")
)
act$modify_identity(grid)
#> # A tibble: 4 × 3
#> term component ratings
#> <chr> <chr> <list>
#> 1 tired__academic identity <dbl [3]>
#> 2 taciturn__academic identity <dbl [3]>
#> 3 angry__academic identity <dbl [3]>
#> 4 happy__academic identity <dbl [3]>