The $fundamentals()
method does this and that..
See also
Other InteRactModel methods:
method-add-equation
,
method-characteristic-emotion
,
method-closest-terms
,
method-deflection
,
method-max-confirm
,
method-modify-identity
,
method-optimal-behavior
,
method-reidentify
Examples
act <- interact()
#> ✔ dictionary = list(dataset = "usfullsurveyor2015", group = "all")
#> ✔ equations = list(key = "us2010", group = "all")
act$fundamentals("ceo")
#> # Source: ()
#> # A data frame: 1 × 5
#> term component e p a
#> * <chr> <chr> <dbl> <dbl> <dbl>
#> 1 ceo identity 0.71 3.22 1.48
x <- sample(act$dictionary$term, size = 20)
act$fundamentals(x)
#> # Source: ()
#> # A data frame: 21 × 5
#> term component e p a
#> * <chr> <chr> <dbl> <dbl> <dbl>
#> 1 alarm behavior -0.36 1.43 2.22
#> 2 ally identity 2.34 2.15 -0.16
#> 3 command behavior -0.43 2.22 1.68
#> 4 confidant identity 2.43 2.32 -0.64
#> 5 constrain behavior -1.91 1.47 0.65
#> 6 contented modifier 2.35 1.7 -0.74
#> 7 convince behavior 1.11 2.14 0.58
#> 8 displeased modifier -2.07 -0.32 -0.7
#> 9 exalt behavior 0.72 1.08 1.08
#> 10 housewife identity 1.79 0.39 -0.14
#> # ℹ 11 more rows