The $closest_terms()
method does this and that..
Usage
closest_terms(
epa,
component = c("identity", "behavior", "modifier"),
max_dist = 1
)
See also
Other InteRactModel methods:
method-add-equation
,
method-characteristic-emotion
,
method-deflection
,
method-fundamentals
,
method-max-confirm
,
method-modify-identity
,
method-optimal-behavior
,
method-reidentify
Examples
act <- interact()
#> ✔ dictionary = list(dataset = "usfullsurveyor2015", group = "all")
#> ✔ equations = list(key = "us2010", group = "all")
act$closest_terms(c(e = 2, p = 1, a = 0), component = "identity", max_dist = 0.2)
#> lady graduate_student forest_ranger wage_earner
#> 0.0145 0.0227 0.0501 0.0826
#> baker social_worker non_smoker nutritionist
#> 0.0945 0.0973 0.1034 0.1556
#> artist
#> 0.1829
act$closest_terms(c(e = 2, p = 1, a = 0), component = "behavior", max_dist = 0.2)
#> turn_to consult ask agree_with ask_about answer
#> 0.0566 0.0801 0.0923 0.1022 0.1649 0.1808
#> dine_with concur_with
#> 0.1934 0.1978
act$closest_terms(c(e = 2, p = 1, a = 0), component = "modifier", max_dist = 0.2)
#> light_hearted cute dutiful carefree gourmet
#> 0.0474 0.1396 0.1709 0.1982 0.1997
## Using `$closest_terms()` on event deflection data frames
d <- act$deflection(list(A = "ceo", B = "kick", O = "ceo"))
d
#> # Event deflection
#> # A data frame: 1 × 4
#> A B O deflection
#> * <chr> <chr> <chr> <dbl>
#> 1 ceo kick ceo 30.2
opt_reidentify <- act$reidentify(d, who = "object")
opt_reidentify
#> # A tibble: 1 × 3
#> Oe Op Oa
#> <dbl> <dbl> <dbl>
#> 1 -0.507 -2.63 -1.91
act$closest_terms(opt_reidentify, max_dist = 1)
#> nobody victim weakling shut_in cripple
#> 0.1665388 0.4721416 0.6651541 0.7311867 0.7626249
#> homeless_person dummy
#> 0.8316222 0.8925427
opt_behavior <- act$optimal_behavior(d, who = "object")
act$closest_terms(opt_behavior, max_dist = 0.5, component = "behavior")
#> defeat apprehend debate_with confront challenge urge
#> 0.1659501 0.3250959 0.3304993 0.3353730 0.4298606 0.4782635
#> sleep_with
#> 0.4949517